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Abstract

Chagas disease, caused by the parasite Trypanosoma
cruzi, presents significant diagnostic challenges due to
asymptomatic impacts on heart health and limited re-
sources in the affected areas. We develop a deep-
learning model to automate Chagas disease screening us-
ing 12-lead electrocardiograms from multiple datasets, in-
cluding CODE-15, PTB-XL, and SaMi-Trop. We com-
bine automatic hyperparameter optimization and class-
imbalance handling with a 1D dilated residual neural
network (ResNet) augmented with squeeze-and-excitation
(SE) blocks. As part of the George B. Moody PhysioNet
Challenge 2025 (Detection of Chagas Disease from the
ECG), our team (CLECLINIC) achieved a mean challenge
score of 0.198 across the held-out final test set (ranking
24th of 40 teams). Compared with traditional machine-
learning baselines, the proposed ResNet delivered a ~4-
fold performance gain. These results support the use of
deep-learning approaches as a viable tool for scalable,
automated Chagas disease screening, particularly in low-
resource clinical environments where traditional diagnos-
tics are unavailable.

1. Introduction
Chagas disease, termed American trypanosomiasis, is a
chronic illness caused by the parasite Trypanosoma cruzi,
predominantly transmitted through triatomine insects (1).
Approximately 8 million people worldwide are infected
annually, mainly concentrated in Latin America. Migra-
tion patterns have begun to introduce Chagas disease into
non-endemic regions, including approximately 300,000
cases in the United States (2). Furthermore, Chagas dis-
ease accounts for 670,000 disability-adjusted life-years
annually (1). Environmental and socioeconomic factors
significantly impact the epidemiology of Chagas disease.
Subtropical climates with high humidity, warmer temper-
atures, and substandard housing conditions proliferate the
activity of Trypanosoma cruzi parasites and infection (2).

The diagnosis of Chagas disease is a formidable chal-
lenge due to the asymptomatic or nonspecific clinical
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Figure 1: Spectrograms of ECG Data for Leads V1 and V2
with examples from 2 subjects: one with Chagas disease
and one without. The brighter colors indicate higher signal
energy at the time–frequency, more present in the example
with the disease.

presentation observed in acute and chronic indeterminate
phases. Once in the chronic phase, persistent inflammation
and damage to myocardial cells can occur in heart tissue
with the potential to lead to heart failure.

Although serological diagnostic methods exist, such as
enzyme-linked immunosorbent assays (ELISA) and poly-
merase chain reaction (PCR) testing, they are resource-
intensive, often leading to delayed detection and ineffec-
tive disease management for affected patients (2; 3).

Electrocardiograms (ECGs) are crucial for detecting
chronic Chagas cardiomyopathy. In Figure 1, we illustrate
how visually distinguishable the ECG spectrograms from
a Chagas-present and Chagas-absent patients. However,
manual ECG interpretation is prone to variability among
healthcare providers and is a costly process for interpre-
tation. To address these challenges, the 2025 George B.
Moody PhysioNet Challenge aims to advance research by
providing large-scale, annotated 12-lead ECG datasets and
a standardized framework for developing automated meth-
ods for Chagas disease detection (4; 5).
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Figure 2: During preprocessing, ECG signals are resam-
pled, cropped/padded, and z-normalized, then passed as
input to the model.

In this work, we build on recent advances in Convo-
lutional Neural Networks (CNNs) and residual network
(ResNet) variants, which have achieved state-of-the-art
performance in ECG classification by extracting complex
temporal and spatial features from large datasets(6; 7).
Using the 2025 PhysioNet dataset, we apply a ResNet-
inspired deep-learning approach for automated Chagas
disease detection from 12-lead ECGs. Our objective is to
enhance screening availability, improve diagnostic consis-
tency and precision, and ultimately support better patient
outcomes.

2. Methodology
The following subsections present the model architecture
approach for Chagas classification. Our approach consists
of a ResNet Network for prediction. Training utilizes an
imbalance-aware strategy and precision-recall curve cali-
bration.

For comparison purposes, we experimented with al-
ternative machine learning methods, including a Ran-
dom Forest model combined with features extracted via
tsfresh.

2.1. Data
This study uses three datasets from the PhysioNet 2025
Challenge for model training, each offering different de-
mographic, geographic, and clinical characteristics rele-
vant to the detection of Chagas disease (8). The CODE-15
dataset comprises 345,779 ECG recordings from 233,770
patients, collected through the Minas Gerais Telehealth
Network in Brazil. These recordings include self-reported
cases of Chagas disease and are available in 7.3-second
or 10.2-second durations, sampled at 400 Hz. 1.91% of
the records were labeled as Chagas-positive and 98.09%
as Chagas-negative (9). The PTB-XL dataset provides
21,799 ECG records from 18,869 European patients, each
10.0 seconds in length and sampled at 500 Hz. It con-
tains only Chagas-negative cases, making it valuable for
training balanced models and generalization (10). Finally,
the SaMi-Trop dataset contains 1,631 ECGs from 1959 pa-
tients, specifically validated for chronic Chagas cardiomy-

opathy, where all cases are Chagas-positive. Specifically,
it includes women aged 50 to 74 years of age from lower
socioeconomic backgrounds, with recordings of 7.3 or
10.2-second durations and a sampling frequency of 400
Hz, offering high clinical relevance for Chagas-specific
modeling (11). Note that the validation and test data are
comprised of multiple datasets with strong labels; these
datasets are distinct from the training set.

2.2. Preprocessing
All raw 12-lead ECGs were standardized with a three-stage
preprocessing pipeline as shown in Figure 2. First, signals
were resampled to 500 Hz so that recordings from differ-
ent sources shared the same frequency content. Second,
to present a uniform input size, each record was converted
to a fixed 5120-length window. Traces shorter than the
set length were zero-padded, and longer traces were cen-
tered and trimmed accordingly. Third, we normalized each
lead by median-centering and median absolute deviation
(MAD) scaling, removing offset and placing amplitudes
on a common scale, robust to ECG outliers.

For lead ℓ with samples xℓ(t),

zℓ(t) = clip[−5,5]

(
xℓ(t)−median(xℓ)

MAD(xℓ) + 10−6

)
MAD(x) = median

(
|x−median(x)|

)
The first equation highlights the z-normalization process

applied to all ECG signals. The clip[−5,5] interval is ap-
plied on the z-score, capping standardized values at ±5 to
suppress extreme outliers. The second equation defines the
median absolute deviation (MAD), which measures vari-
ability by taking the median of absolute deviations from
the median.

2.3. Model Architecture
We use a compact dilated residual 1-dimensional (1D)
ResNet CNN with squeeze-and-excitation (SE) and Group
Normalization (12; 13). The network processes the prepro-
cessed 12-lead ECG segment through three residual con-
volutional blocks as shown in Figure 3. Each block con-
tains a 1D convolution (Conv1d) with a 3x1 kernel and in-
creasing dilation rates (1, 2, and 4), enabling the model to
capture progressively wider temporal contexts within the
receptive field while preserving signal resolution. This is
followed by a GroupNorm layer to rescale ECG feature
maps across leads, and ReLU activation. When moving to
the next residual block, we use a 1x1 Conv1d. The ECG
sequence length is gradually reduced between blocks via
max pooling.

While training, data was processed as tensors below
(Length, Channels):

(5120, 12)
MaxPool−−−−−−−−→

Block 1 (d=1)
(2560, 64)

MaxPool−−−−−−−−→
Block 2 (d=2)

(1280, 128)
GlobalMaxPool−−−−−−−−→
Block 3 (d=4)

(1, 256)

Ultimately, the classifier head operates on the pooled
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Figure 3: Model architecture with data flowing from left (raw data) to right (classification labels). The 1D ResNet processes
each ECG segment through three residual blocks with increasing dilation (1–4) to expand the receptive field. The flattened
features feed a linear layer with sigmoid to produce a classification probability.

features by flattening them into a single vector and pass-
ing them through a fully connected neural network with a
sigmoid activation to output the probability of Chagas dis-
ease. The model was implemented in Python 3.13.0 using
PyTorch 2.1.2.

2.4. Training and Inference
We trained the model using stratified 90/5/5 respective
train, validation, and test splits. To improve robustness,
we applied data augmentations including Gaussian noise,
scale jitter, and mixup. Training employed Focal Loss
(α = 0.5, γ = 1.5), which emphasizes rare positive cases
and mitigates the effects of the 1:30 positive–negative class
imbalance. We optimized the 1D ResNet model with
AdamW under a OneCycleLR schedule. The OneCycleLR
schedule helped the optimizer explore a wide learning-rate
range and converge more efficiently. For stability on ECG
sequences, we enable exponential moving average (EMA)
of weights to reduce variance and yield better generaliza-
tion. The final training uses early stopping (patience= 4)
to limit overfitting.

In Table 1, we show the selected hyperparameters with
Optuna (30 trials) over augmentation metrics (noise, scale
jitter, mixup), optimizer settings (learning rate, weight de-
cay), and model depth (number of residual blocks). After
training, we pick a single final decision threshold on the
validation split by maximizing F1 on the precision–recall
curve, and we use this fixed threshold at inference to con-
vert probabilities into class labels.

2.5. Evaluation
For consistency with the PhysioNet Challenge framework,
we submitted all trained models to the official challenge
organizers. The submitted model performance was eval-
uated on a hidden validation and test set and returned the
Challenge Score, which served as the primary criterion for
ranking models (4). Since the Challenge setting included
multiple competitors and limited each team to only ten
submission attempts, careful model selection and tuning
were necessary. While additional internal metrics (AU-
ROC, AUPRC, F1) were monitored during development,

Hyperparameter Value / Description
Sequence length 5120
Number of residual blocks 3
Base channel width 64
Dropout rate 0.26
Mixup coefficient 0.04
Noise sigma 0.02
Input scaling range [0.99, 1.01]
Stochastic drop probability 0.06
Classification threshold 0.53
Softmax temperature 0.58
EMA decay rate 0.99

Table 1: Final hyperparameter configuration for the 1D
ResNet model, obtained via Optuna optimization in the lo-
cal experimental environment.

the Challenge Score ultimately determined our compara-
tive evaluation.

3. Results

In Table 3, we present our results during the validation
phase. The best performance was obtained with a 1D
ResNet model, receiving a validation score of 0.271, an
AUROC of 0.70, and an accuracy of 0.98. While compar-
ing multiple models, including machine learning classifiers
with tsfresh-based feature extraction, we observed that tra-
ditional approaches reached substantially lower challenge
scores (e.g., Random Forest-based models reached 0.097
and 0.062) with close to random AUROC performance.

The official evaluation was performed in a separate hid-
den test set based on the model of the validation phase. Our
approach achieved a mean score of 0.198, ranking 24th out
of 40 in the CinC competition. Our final submission on the
test set is summarized in Table 2.

Model ID Mean Score REDS-II SaMi-Trop III ELSA-Brasil
2684 0.198 0.246 0.277 0.071

Table 2: Overall final scores in PhysioNet challenge test
datasets, including per-dataset performance.
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Model (ID) Architecture HPO Score AUROC AUPRC Accuracy F1
Model 9 (2684) ResidualDilatedBlocks + SE Optuna 0.271 0.701 0.122 0.980 0.013
Model 7 (2627) ResidualDilatedBlocks + SE Optuna 0.270 0.671 0.119 0.980 0.020
Model 8 (2617) No Residual 3-Block CNN Optuna 0.262 N/A N/A N/A N/A
Model 6 (2564) ResidualDilatedBlocks Optuna 0.236 0.677 0.094 0.977 0.098
Model 1 (2061) ResidualDilatedBlocks + SE Optuna 0.230 0.653 0.058 0.971 0.076
Model 5 (2560) ResidualDilatedBlocks Optuna 0.215 0.667 0.073 0.979 0.038
Model 2 (2443) Dilated Conv. Blocks Optuna 0.194 0.612 0.061 0.978 0.094
Model 3 (2342) RandomForestClassifier + tsfresh GridSearchCV 0.097 0.526 0.025 0.979 0.000
Model 4 (2494) ResidualDilatedBlocks + SE Optuna 0.050 0.500 0.021 0.979 0.000
Baseline Model RandomForestClassifier N/A 0.062 N/A N/A N/A N/A

Table 3: PhysioNet Official validation phase: Model comparison across architectures and hyperparameter optimization
(HPO).

4. Discussion
Our results suggest that a dilated 1D SE ResNet can learn
and discriminate features from 12-lead ECG data for auto-
mated Chagas screening. We also demonstrated that deep
learning architectures are more capable of capturing com-
plex temporal dependencies in ECG signals compared to
traditional machine learning models, such as Random For-
est.

We noticed two main challenges during this project.
First, the 90/5/5 validation data split and its impact on
heavy calibration efforts. With the 1:30 class imbalance,
very few positive cases were in the 5% validation split,
which introduces statistical uncertainty in the precision–
recall curve and calibration performance. We also explored
Synthetic Minority Oversampling (SMOTE) to mitigate
the 1:30 class imbalance, but applying it to thousands of
12-lead ECG sequences was prevented by memory limits.
As a result, we adopted a lightweight sampling strategy
with focal loss. This function down-weights easy negatives
and gives more weight to the rare positive cases, providing
a reasonable improvement for model learning despite the
imbalance. Future work, with robust computing resources,
could revisit imbalance handling in stratified split adjust-
ments and synthetic oversampling.

5. Conclusion
We demonstrate that a dilated 1D ResNet achieves ap-
proximately 4-fold gains over traditional machine learning
baselines. We emphasize that learning discriminative fea-
tures for Chagas disease from 12-lead ECGs is possible.
This approach achieved competitive results in the Phys-
ioNet 2025 Challenge under the constraint of limited sub-
missions. Our findings highlight the potential for scalable
Chagas disease screening in resource-constrained areas.
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